35 research outputs found

    Differential phenotypes of memory CD4 and CD8 T cells in the spleen and peripheral tissues following immunostimulatory therapy.

    Get PDF
    BACKGROUND: Studies assessing immune parameters typically utilize human PBMCs or murine splenocytes to generate data that is interpreted as representative of immune status. Using splenocytes, we have shown memory CD4-T cells that expand following systemic immunostimulatory therapies undergo rapid IFNg-mediated activation induced cell death (AICD) resulting in a net loss of total CD4-T cells which correlates with elevated PD-1 expression. This is in contrast to CD8-T cells which expand with minimal PD-1 upregulation and apoptosis. In this study we expand upon our previous work by evaluating CD4 and CD8-T cell phenotype and distribution in peripheral organs which are more representative of immune responses occurring at metastatic sites following immunotherapy. METHODS: Phenotypic assessment of T cells in both lymphoid (spleen and LN) as well as peripheral organs (liver and lungs) in control and immunotherapy treated mice was performed to survey the impact of location on memory phenotype and activation marker status. Peripheral blood from patients undergoing systemic high dose IL-2 was also assessed for expression of PD-1 and memory phenotype. RESULTS: Here we reveal that, similar to what occurs in the spleen and lymph nodes, CD4-T cell numbers decreased while CD8-T cells expanded at these peripheral sites. In contrast to having differential expression of PD-1 as occurs in the spleen, both CD4 and CD8-T cells had significantly elevated levels of PD-1 in both the liver and lungs. Further analysis correlated PD-1 expression to CD62L CONCLUSIONS: These data highlight PD-1 expressing and/or T TRIAL REGISTRATION: ClinicalTrials.gov NCT01416831. Registered August 12, 2011

    Out-of-Sequence Signal 3 Paralyzes Primary CD4+ T-Cell-Dependent Immunity

    Get PDF
    SummaryPrimary T cell activation involves the integration of three distinct signals delivered in sequence: (1) antigen recognition, (2) costimulation, and (3) cytokine-mediated differentiation and expansion. Strong immunostimulatory events such as immunotherapy or infection induce profound cytokine release causing “bystander” T cell activation, thereby increasing the potential for autoreactivity and need for control. We show that during strong stimulation, a profound suppression of primary CD4+ T-cell-mediated immune responses ensued and was observed across preclinical models and patients undergoing high-dose interleukin-2 (IL-2) therapy. This suppression targeted naive CD4+ but not CD8+ T cells and was mediated through transient suppressor of cytokine signaling-3 (SOCS3) inhibition of the STAT5b transcription factor signaling pathway. These events resulted in complete paralysis of primary CD4+ T cell activation, affecting memory generation and induction of autoimmunity as well as impaired viral clearance. These data highlight the critical regulation of naive CD4+ T cells during inflammatory conditions

    Increased Antitumor Effects Using IL-2 with Anti–TGF-β Reveals Competition between Mouse NK and CD8 T Cells

    No full text
    Due to increasing interest in the removal of immunosuppressive pathways in cancer, the combination of IL2 with antibodies to neutralize TGFβ, a potent immunosuppressive cytokine, was assessed. Combination immunotherapy resulted in significantly greater anti-tumor effects. These were correlated with significant increases in the numbers and functionality of NK cells, NK progenitors and activated CD8 T cells resulting in the observed anti-tumor effects. Combination immunotherapy was also accompanied with lesser toxicities than IL2 therapy alone. Additionally, we observed a dual competition between NK and activated CD8 T cells such that after immunotherapy, the depletion of either effector population resulted in the increased total expansion of the other population and compensatory anti-tumor effects. This study demonstrates the efficacy of this combination immunotherapeutic regimen as a promising cancer therapy and illustrates the existence of potent competitive regulatory pathways between NK and CD8 T cells in response to systemic activation

    Repeated PD-1/PD-L1 monoclonal antibody administration induces fatal xenogeneic hypersensitivity reactions in a murine model of breast cancer.

    No full text
    Monoclonal antibodies (mAbs) targeting coinhibitory molecules such as PD-1, PD-L1 and CTLA-4 are increasingly used as targets of therapeutic intervention against cancer. While these targets have led to a critical paradigm shift in treatments for cancer, these approaches are also plagued with limitations owing to cancer immune evasion mechanisms and adverse toxicities associated with continuous treatment. It has been difficult to reproduce and develop interventions to these limitations preclinically due to poor reagent efficacy and reagent xenogenecity not seen in human trials. In this study, we investigated adverse effects of repeated administration of PD-1 and PD-L1 mAbs in the murine 4T1 mammary carcinoma model. We observed rapid and fatal hypersensitivity reactions in tumor bearing mice within 30-60 min after 4-5 administrations of PD-L1 or PD-1 mAb but not CTLA-4 antibody treatment. These events occurred only in mice bearing the highly inflammatory 4T1 tumor and did not occur in mice bearing non-inflammatory tumors. We observed that mortality was associated with systemic accumulation of IgG1 antibodies, antibodies specific to the PD-1 mAb, and accumulation of Gr-1high neutrophils in lungs which have been implicated in the IgG mediated pathway of anaphylaxis. Anti-PD-1 associated toxicities were alleviated when PD-1 blockade was combined with the therapeutic HSP90 inhibitor, ganetespib, which impaired immune responses toward the xenogeneic PD-1 mAb. This study highlights a previously uncharacterized fatal hypersensitivity exacerbated by the PD-1/PD-L1 axis in the broadly used 4T1 tumor model as well as an interesting relationship between this particular class of checkpoint blockade and tumor-dependent immunomodulation
    corecore